Support us and view this ad

可选:点击以支持我们的网站

免费文章

1. Core Positioning Technology Architecture 1.1 Fundamental Techniques Trilateration with RSSI import numpy as np from scipy.optimize import least_squares def weighted_trilateration(anchor_positions, distance_measurements, rssi_std): """ Advanced trilateration with measurement confidence weighting Parameters: anchor_positions: Array of (x,y,z) coordinates distance_measurements: Array of estimated distances rssi_std: Standard deviation of RSSI measurements for each anchor """ def residuals(x, anchors, distances, weights): return weights * (np.linalg.norm(anchors - x, axis=1) - distances) # Calculate weights based on measurement confidence weights = 1 / (rssi_std ** 2 + 1e-6) weights = weights / np.sum(weights) initial_guess = np.mean(anchor_positions, axis=0) result = least_squares( residuals, initial_guess, args=(anchor_positions, distance_measurements, weights), method='lm' ) return result.x, result.cost Fingerprinting with Machine Learning import tensorflow as tf from sklearn.ensemble import RandomForestRegressor import xgboost as xgb class HybridFingerprinting: def __init__(self): self.rf_model = RandomForestRegressor(n_estimators=100) self.xgb_model = xgb.XGBRegressor() self.nn_model = self.build_neural_network() def build_neural_network(self): model = tf.keras.Sequential([ tf.keras.layers.Input(shape=(30,)), # 30 APs tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dropout(0.3), tf.keras.layers.Dense(64, activation='relu'), tf.keras.layers.Dense(32, activation='relu'), tf.keras.layers.Dense(3) # x, y, floor ]) model.compile(optimizer='adam', loss='mse') return model 2. State-of-the-Art Algorithms 2.1 Channel State Information(CSI) Based Localization Super-Resolution Algorithm Implementation import torch import torch.nn as nn import numpy as np class CSINet(nn.Module): """Deep Learning for CSI-based Sub-meter Positioning""" def __init__(self, subcarriers=64, antennas=3): super().__init__() self.phase_correction = PhaseCorrectionLayer() self.feature_extractor = nn.Sequential( nn.Conv1d(antennas*2, 64, kernel_size=3), # 2 for amplitude/phase nn.BatchNorm1d(64), nn.ReLU(), nn.Conv1d(64, 128, kernel_size=3), nn.BatchNorm1d(128), nn.ReLU(), nn.AdaptiveAvgPool1d(1) ) self.attention = nn.MultiheadAttention(128, 8, batch_first=True) self.regressor = nn.Sequential( nn.Linear(128, 256), nn.ReLU(), nn.Dropout(0.4), nn.Linear(256, 128), nn.ReLU(), nn.Linear(128, 3) # 3D coordinates ) def forward(self, csi_data): # csi_data: [batch, antennas, subcarriers, 2] batch_size = csi_data.shape[0] # Phase sanitization csi_corrected = self.phase_correction(csi_data) # Feature extraction features = self.feature_extractor( csi_corrected.view(batch_size, -1, csi_corrected.shape[2]) ).squeeze(-1) # Attention mechanism features = features.unsqueeze(1) attn_output, _ = self.attention(features, features, features) features = attn_output.squeeze(1) # Position estimation position = self.regressor(features) return position class PhaseCorrectionLayer(nn.Module): """Correct phase offsets in CSI measurements""" def forward(self, csi): amplitude = torch.abs(csi[..., 0]) phase = csi[..., 1] # Remove linear phase shift subcarrier_indices = torch.arange(phase.shape[-1]).float() slope = torch.mean(phase, dim=-1, keepdim=True) phase_corrected = phase - slope * subcarrier_indices # Wrap phase to [-π, π] phase_corrected = torch.atan2( torch.sin(phase_corrected), torch.cos(phase_corrected) ) return torch.stack([amplitude, phase_corrected], dim=-1) 2.2 Federated Learning for Privacy-Preserving Localization import flwr as fl from typing import List, Tuple, Dict import numpy as np class FederatedPositioningStrategy(fl.server.strategy.FedAvg): def __init__(self): super().__init__( fraction_fit=0.3, fraction_evaluate=0.2, min_fit_clients=10, min_evaluate_clients=5, min_available_clients=20 ) def aggregate_fit(self, rnd, results, failures): """Custom aggregation with differential privacy""" weights_results = [] for client_result in results: client_weights = client_result[1].parameters # Add Gaussian noise for differential privacy epsilon = 1.0 delta = 1e-5 sensitivity = self.calculate_sensitivity(client_weights) scale = sensitivity * np.sqrt(2 * np.log(1.25/delta)) / epsilon noisy_weights = [] for w in client_weights: noise = np.random.normal(0, scale, w.shape) noisy_weights.append(w + noise) weights_results.append((len(client_result[1].parameters), noisy_weights)) return self.weighted_aggregate(weights_results) 2.3 Sensor Fusion with Extended Kalman Filter class MultiSensorFusionEKF: """EKF for Bluetooth + IMU + WiFi fusion""" def __init__(self): # State: [x, y, z, vx, vy, vz, qw, qx, qy, qz] self.state_dim = 10 self.state = np.zeros(self.state_dim) self.state[6] = 1.0 # Initialize quaternion self.covariance = np.eye(self.state_dim) * 0.1 def predict(self, imu_data, dt): """Prediction step using IMU data""" # IMU data: [acc_x, acc_y, acc_z, gyro_x, gyro_y, gyro_z] acceleration = imu_data[:3] angular_velocity = imu_data[3:] # State transition matrix F = self.compute_jacobian_F(dt, acceleration, angular_velocity) # Process noise Q = self.compute_process_noise(dt) # Predict state self.state = self.state_transition(self.state, acceleration, angular_velocity, dt) self.covariance = F @ self.covariance @ F.T + Q def update_bluetooth(self, bluetooth_position, bluetooth_covariance): """Update with Bluetooth measurement""" H = np....

继续阅读完整内容

支持我们的网站,请点击查看下方广告

正在加载广告...